Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019: Swegon CLA-A-125-500 from

Swegon Group AB

Programme:	The International EPD® System, www.environdec.com
Programme operator:	EPD International AB
EPD registration number:	S-P-03263
Publication date:	2021-10-22
Valid until:	2026-09-22

EN 15804

VERIFIED

Programme information

Programme:	The International EPD® System
	EPD International AB
	Box 210 60
	SE-100 31 Stockholm
	Sweden
	www.environdec.com
	info@environdec.com
Product category rules (PCR): PCR 2019:14 Construction	products. Version 1.11, date 2021-05-02.

PCR review was conducted by: The Technical Committee of the International EPD® System. Chair: Claudia A. Peña. Contact via info@environdec.com

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

 \Box EPD process certification \boxtimes EPD verification

Third party verifier: Camilla Landén and Anders Nordelöf from Bureau Veritas Sweden

Approved by: The International EPD[®] System

Procedure for follow-up of data during EPD validity involves third party verifier:

🛛 Yes 🛛 No

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

Company information

Owner of the EPD

Swegon Group AB

Description of the organisation

People spend most of their time indoors, which is why we need a sound indoor climate for our health, well-being, and happiness. Swegon's ambition is to achieve the world's best indoor environment with the least possible impact on the external environment. Our business models, services, products, and systems are all designed to provide the right solution for each individual project.

Swegon Group AB is a market leading supplier in the field of indoor environment, offering solutions for ventilation, heating, cooling and climate optimisation, as well as connected services and expert technical support. Swegon has subsidiaries in and distributors all over the world and 16 production plants in Europe, North America and India. The company employs more than 2 600 people.

Name and location of production site

Swegon Operations AB, Fallebergsvägen 17, SE-671 34 Arvika

Product information

Product name

Swegon CLA-A- 125- 500

Product identification

Product number: 910654102

The table below provides information on the product presented in this EPD.

Product	Representative product included in the EPD	Technical standard	Weight (kg)	Dimensions (mm)	Material composition		
		Type-approved to Ductwork leakage class D.					
Sound attenuator	CLA-A-125-500	TG SC0478-18) in terms of fire resistance class	3.75	236x177x500	Steel, insulation material, polymers		
utteridutor		E120. EI30, EI60 and EI120 are met provided that the safety distance is met			material, polymers		

Product description

The sound attenuator is the module of the air ventilation system that handles and reduces sound. This specific product variant can be used in circular ducts. The sound attenuator is located on the ceiling of the rum but it not visible to the users. It consists of steel and insulation material and some minor polymer or metal parts. The expected lifetime of the product is 25 years.

Products included in the EPD

This EPD concerns the sound attenuator CLA-A- 25-500

UN CPC code

The CPC code applied is CPC 54632 Ventilation and air-conditioning equipment installation services.

Geographical scope

Sweden, Norway, Finland

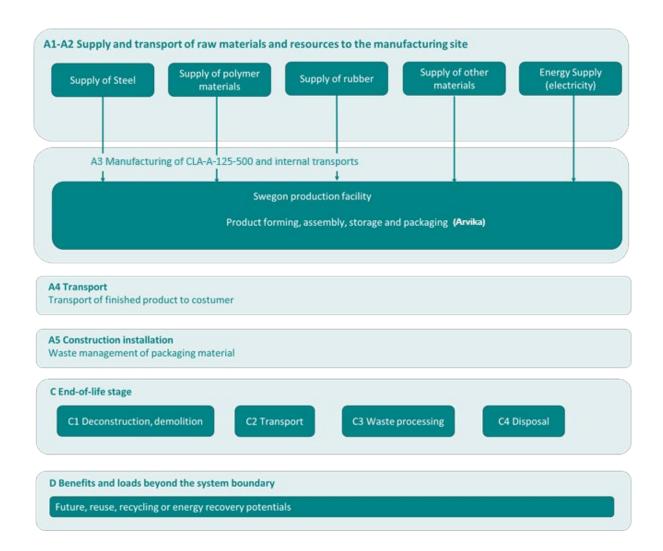
LCA information

Declared unit

The declared unit is set to 1 piece of finished product (3.75 kg).

Reference service life

This EPD does not indicate Reference Service Life (RSL).


Time representativeness

The data used to model product manufacturing corresponds to 2020. The data from generic databases are from 2014 – 2021. No data used is older than 10 years.

Database(s) and LCA software used

The LCA was modelled using the LCA software GaBi 10 Professional and the respective generic life cycle inventory datasets provided by Sphera (2021).

System diagram

Description of system

Cradle to gate with module C1-C4, module D and with optional modules. The life cycle stages included are described in the table below:

	Prod	luct st	tage		uction s stage			Us	e sta	ge			End of life stage			ge		Resource recovery stage
	Raw material	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction, demolition	Transport	Waste processing	Disposal		Reuse, recycling or energy recovery potentials
Module	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4		D
Modules declared	Х	Х	Х	Х	X*	ND	ND	ND	ND	ND	ND	ND	Х	Х	Х	Х		Х
Geography	BE, SE	BE, SE	SE	SE, NO, FI	SE, NO, FI	-	-	-		-	-	-	SE, NO, FI	SE, NO, FI	SE, NO, FI	SE, NO, FI		SE, NO, FI
Specific data used			1,2	2%		-	-	-	-	-	-	-	-	-	-	-		-
Variation - products			Not re	elevant		-	-	-	-	-	-	-	-	-	-	-		-
Variation -sites			Not re	elevant		-	-	-	-	-	-	-	-	-	-	-		-

X: Module declared

ND: Module not declared

*This stage (A5) is partly declared i.e. only handling of packaging material is included.

Allocation

Allocation has been avoided whenever possible by increasing the level of detail of the production process and by collecting product specific environmental data. Electricity consumption at the production facility was based on specific measurements and product specific data were collected. In cases where allocation could not be avoided the electricity demand was allocated to the product based on its mass or time in the respective machine.

All direct and indirect energy (heat and electricity) consumption were included in the analysis. For the indirect energy use (such as for lighting and heating) a mass-based allocation approach was applied.

Scenarios

The analysis is carried out using factory-specific data for use of energy and utilities and waste generation, as well as product-specific data for use of raw materials. Therefore, the results represent the product system and no other scenarios were applied.

Data quality

6

Site-specific production data has been retrieved for 2020 from the production site. The upstream and downstream processes have been modelled based on data from generic databases, mostly Sphera database. The collected data was reviewed in terms of consistency, and it is estimated as good quality.

Cut-off criteria

The study applies a cut-off criterion of maximum 1%.

Modelling of transportation modules

Three types of transportation processes are included in this LCA study; the transport of raw materials and its packaging to the production sites (A2), the transport of the final products to the customers (A4) and the transport of waste materials from the production sites to the disposal (C2). The following table presents the transport scenarios applied and the modelling assumptions:

Transport module	Transport mode	Average distance (km)	Capacity utilization (%)
Suppliers to manufacturing (A2)	28-32-ton Euro 5 diesel truck	278	85%
suppliers to manufacturing (Az)	Electric train	1751	
Manufacturing to costumer (A4)	28-32-ton Euro 5 diesel truck	397	85%
Customer to waste management (C2)	28-32-ton Euro 5 diesel truck	150	85%

Modelling of product manufacturing (A3)

Swegon sound attenuator CLA-A- 125- 500 consists primarily of steel and stone wool with smaller amounts of polymer and rubber components. The steel produced in upstream modules is supplied in the form of rolled sheets that are undergo through different processes (cutting, welding etc) before the insulation material is added and final product is formed.

The inventory performed for the production process accounts for all the energy flows needed during the production process (such as electricity) as well as the energy demands for auxiliary process such as internal transports. Electricity demand in the facilities is modelled using the site-specific renewable electricity mix that is supplied to Swegon consisting 100% of hydro power.

The waste streams from the manufacturing site include steel scrap, copper (welding wire) and stone wool. Steel and coper are sent to material recycling while stone wool is disposed in landfill.

Modelling of End-Of-Life (C1-C4)

The impacts from deconstruction were modelled based on literature data for energy use in demolition, accounting for 0.004 MJ of diesel-powered machinery work per kg finished product. The entire product was assumed to be demolished at the End of Life.

Below is an example on how the amounts for C3 and C4 was calculated.

C3 = Reference flow * 0.85 * share of steel in the product C4= Reference flow - C3

EPD Swegon CLA-A-125-500

The following end-of-life scenario has been applied:

Scenario	Kg per declared unit	Source for scenario
Recycling, waste processing at treatment plant. (C3)	1.59	Assumption
Disposal, at inert construction waste landfill (C4)	2.16	Assumption

In this scenario, it was assumed that steel, aluminium and copper in the product will be recycled.

Modelling of benefits beyond End-Of-Life (D)

For module D, the benefits from the recycling waste are presented. The steel recycled is credited with the avoided production of the raw material they would be displacing if recycled. A loss factor of 15 % for steel was applied to the benefits from the recycling waste streams since losses exits in the recycling process.

Furthermore, the steel was assumed to consist of 12.7 % scrap which therefore was subtracted before crediting. The steel was credited with the dataset "GLO: Values of scrap (Worldsteel 2018)."

Key estimates and assumptions

The scenarios and assumptions applied in this study for all the life cycle stages included are based on data provided by Swegon and correspond to the most likely scenario.

Content declaration

The content declaration includes the declared unit of product (3.75 kg) and the associated packaging material; therefore, the gross material weight is larger than 3.75 kg.

Product components	Weight, kg	Post-consumer material, weight-%	Renewable material, weight-%
Steel	1.89	12.7	0
Stone wool	1.50	0	0
Polymers	0.145	0	0
Rubber	0.015	0	0
Glue	0.02	0	0
Welding wire	0.18	0	0
Packaging materials	Weight, kg	Weight-% (versus the product)	
Steel	1.89	12.7	

No substances that appear in the REACH candidate list of SVHC (Candidate List of Substances of Very High Concern) are present or used in the product concerning this EPD.

Environmental performance for the CLA-A-125-500 Sound attenuator

Potential environmental impact per piece finished product

Parameter describing environmental impacts	Unit	A1-A3	A1	A2	A3	A4	A5	C1	C2	С3	C4	D
Indicator for climate impact, GWP-GHG	kg CO2 eq.	7.80E+00	7.63E+00	7.69E-02	9.88E-02	8.64E-02	1.20E-02	1.24E-03	3.26E-02	4.19E-03	3.22E-02	-2.26E+00
Climate Change - total	kg CO2 eq.	7.98E+00	7.80E+00	7.85E-02	1.00E-01	8.82E-02	1.20E-02	1.26E-03	3.33E-02	4.31E-03	3.18E-02	-2.36E+00
Climate Change - fossil	kg CO2 eq.	8.02E+00	7.85E+00	7.78E-02	9.96E-02	8.76E-02	1.20E-02	1.25E-03	3.31E-02	4.28E-03	3.27E-02	-2.36E+00
Climate Change - biogenic	kg CO2 eq.	-3.82E-02	-3.88E-02	2.27E-04	3.59E-04	-1.12E-04	2.01E-07	-1.61E-06	-4.24E-05	1.40E-06	-9.49E-04	-1.53E-03
Climate Change - land use and land use change	kg CO2 eq.	2.64E-03	2.21E-03	4.13E-04	2.08E-05	7.20E-04	6.15E-08	1.03E-05	2.72E-04	2.96E-05	9.60E-05	3.41E-04
Ozone depletion	kg CFC-11 eq.	9.32E-09	9.13E-09	8.06E-16	1.94E-10	1.12E-17	4.97E-19	1.61E-19	4.24E-18	1.11E-17	1.27E-16	-3.93E-15
Acidification	Mol H+ eq.	3.12E-02	3.06E-02	2.05E-04	4.18E-04	2.67E-04	1.97E-06	7.28E-06	1.01E-04	4.14E-05	2.33E-04	-4.23E-03
Eutrophication aquatic freshwater	kg (PO4)3- eq.	5.00E-05	4.93E-05	2.22E-07	4.94E-07	2.61E-07	1.59E-10	3.75E-09	9.86E-08	1.22E-08	5.48E-08	-4.82E-07
Eutrophication aquatic marine	kg N eq.	4.89E-03	4.75E-03	7.86E-05	6.20E-05	1.22E-04	3.82E-07	3.56E-06	4.63E-05	2.03E-05	6.04E-05	-6.30E-04
Eutrophication terrestrial	mol N eq.	8.22E-02	8.07E-02	8.68E-04	7.00E-04	1.37E-03	8.98E-06	3.94E-05	5.17E-04	2.23E-04	6.64E-04	-6.15E-03
Photochemical ozone formation	kg NMVOC eq.	1.69E-02	1.65E-02	1.67E-04	2.03E-04	2.41E-04	1.04E-06	6.86E-06	9.09E-05	5.91E-05	1.83E-04	-3.23E-03
Depletion of abiotic resources - minerals and metals	kg Sb eq.	3.96E-05	2.00E-05	1.32E-08	1.96E-05	6.70E-09	1.02E-11	9.62E-11	2.53E-09	4.70E-09	3.08E-09	-5.13E-06
Depletion of abiotic resources - fossil fuels	MJ	8.98E+01	8.79E+01	1.19E+00	7.34E-01	1.17E+00	1.79E-03	1.68E-02	4.42E-01	8.35E-02	4.33E-01	-2.05E+01
Water use	m ³	1.11E+00	1.07E+00	5.75E-03	3.50E-02	7.64E-04	1.12E-03	1.10E-05	2.89E-04	8.00E-04	3.51E-03	-4.62E-01

Use of resources per piece finished product

Parameter describing environmental impacts	Unit	A1-A3	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
Use of renewable primary energy excluding renewable primary energy resources used as raw materials (PERE)	MJ	8.94E+00	8.57E+00	3.07E-01	6.39E-02	6.53E-02	3.79E-04	9.39E-04	2.47E-02	6.15E-03	5.84E-02	1.89E+00
Use of renewable primary energy resources used as raw materials (PERM)	MJ	0.00E+00										
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materi- als) (PERT)	MJ	8.94E+00	8.57E+00	3.07E-01	6.39E-02	6.53E-02	3.79E-04	9.39E-04	2.47E-02	6.15E-03	5.84E-02	1.89E+00
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials (PENRE)	MJ	8.98E+01	8.79E+01	1.19E+00	7.36E-01	1.17E+00	1.79E-03	1.68E-02	4.43E-01	8.36E-02	4.34E-01	-2.05E+01
Use of non-renewable primary energy resources used as raw materials (PENRM)	MJ	0.00E+00										
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PENRT)	MJ	8.98E+01	8.79E+01	1.19E+00	7.36E-01	1.17E+00	1.79E-03	1.68E-02	4.43E-01	8.36E-02	4.34E-01	-2.05E+01
Use of secondary material (SM)	kg	3.74E-01	3.70E-01	0.00E+00	4.35E-03	0.00E+00						
Use of renewable secondary fuels (RSF)	MJ	0.00E+00										
Use of non renewable secondary fuels (NRSF)	MJ	0.00E+00										
Net use of fresh water (FW)	m ³	3.71E-02	3.60E-02	3.05E-04	8.19E-04	7.48E-05	2.65E-05	1.07E-06	2.83E-05	2.30E-05	1.07E-04	-1.04E-02

Waste production per piece finished product

Parameter describing environmental impacts	Unit	A1-A3	A1	A2	А3	A4	A5	C1	C2	C3	C4	D
Hazardous waste disposed (HWD)	kg	1.42E-04	1.42E-04	1.87E-10	-9.44E-09	5.91E-11	2.49E-13	8.49E-13	2.23E-11	4.66E-12	4.60E-11	5.72E-09
Non-hazardous waste disposed (NHWD)	kg	1.06E+00	9.69E-01	5.10E-04	9.30E-02	1.74E-04	9.29E-05	2.50E-06	6.58E-05	2.24E-05	2.16E+00	2.47E-01
Radioactive waste disposed (RWD)	kg	8.36E-04	7.31E-04	8.93E-05	1.58E-05	1.42E-06	1.34E-07	2.04E-08	5.36E-07	1.08E-06	4.55E-06	7.43E-07

Output flows per piece finished product

Parameter describing environmental impacts	Unit	A1-A3	A1	A2	A3	A4	A5	C1	C2	C3	C4	D
Components for re-use (CRU)	kg	0.00E+00										
Materials for recycling (MFR)	kg	5.52E-02	0.00E+00	0.00E+00	5.52E-02	0.00E+00						
Material for energy recovery (MER)	Kg	0.00E+00										
Exported electrical energy (EEE)	MJ	0.00E+00										
Exported thermal energy (EET)	MJ	0.00E+00										

Additional information

Certifications and labels

All production plants in Sweden are certified under ISO 14001 and ISO 9001.

Technical documentation

CLA

https://www.swegon.com/siteassets/_product-documents/acoustics/_en/cla-a-b.pdf

EPD Swegon CLA-A-125-500

References

CEN European Committee for Standardisation (2019). EN 15804:2012+A2:2019, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products.

EPD International (2019) General programme instructions for the International EPD System. Version 3.01, date 2019-09-18.

LCA Methodology Report for EPD – LCA methodology report for ventilation products by Swegon Group AB.

PCR 2019:14 CONSTRUCTION PRODUCTS AND CONSTRUCTION SERVICES; ver.1.11 of 2021-05-02.

Sphera (2021). GaBi Software System and database for Life Cycle Engineering 1992-2018 version 10. Leinfelden-Echterdingen, Germany

Contact information

EPD owner:	Email: info@swegon.se Telephone: +46 (0)31-89 58 00 Address: Swegon Group AB. J A Wettergrens gata 7, 421 30 Västra Frölunda, Sweden						
LCA author:	Wedish Environmental Research Institute						
	IVL Swedish Environmental Research Institute, Box 210 60						
	SE-100 31 Stockholm, www.ivl.se.						
	Contact: Sofia Poulikidou Email: sofia.poulikidou@ivl.se Anna Liljenroth Email: anna.liljenroth@ivl.se						
Programme operator:							
	EPD International AB						
	info@environdec.com						

