

Reaction to Fire Classification Report

ISOTOP PVC foil cladding for linear pipe insulation

Bilcare Research GmbH Specialty Films Solutions Postfach 1253 DE-79217 Staufen Deutchland

File:

PCA10115

Serial No.:

14351

Ref.:

MPA/RBI

Pages:

4

Encl.:

0

Date:

2014-02-05

E-mail: <u>dbi@dbi-net.dk</u> <u>www.dbi-net.dk</u>

1 SPONSOR

Bilcare Research GmbH Specialty Films Solutions Postfach 1253 DE-79217 Staufen Deutchland

2 INTRODUCTION

This classification report defines the classification assigned to the product "ISOTOP PVC foil cladding for linear pipe insulation" in accordance with the procedures given in EN 13501-1:2007 + A1:2009.

3 DETAILS OF CLASSIFIED PRODUCT

3.1 GENERAL

The product is defined as thermoplastic jacket as defined in:

EN 15701:2009

Thermoplastic jackets for insulation products for building equipment and industrial installations – Requirements and test methods.

3.2 DESCRIPTION

The product is fully described in the test report in support of the classification listed in 4.1.

4 REPORTS AND TEST RESULTS IN SUPPORT OF THIS CLASSIFICATION

4.1 REPORT

Name of	Name of sponsor	Test report	Test methods	Date of tests
laboratory		ref. No		
DBI	Bilcare	PFA10500	EN 13823	2014-01-15
	Research GmbH		EN ISO 11925-2	2014-01-17

The samples were received on 2013-12-19

Date: 2014-02-05

4.2 TEST RESULTS

Parameter	Number of tests ^a	Results	
		Continuous	Compliance
		parameter	with
		<u>.</u>	parameters
FIGRA _{0.2 MJ} (W/S)	3	370	(-)
FIGRA _{0.4 MJ} (W/S)		(-)	(-)
			Y
THR _{600s} (MJ)			(-)
			(-)
			(-)
			Y Y
D f>10s	3		
$_{s} \le 150$ mm within 60 s.	6		
Flaming droplets and particles	6		
		(-)	Y (all)
$F_s \le 150 \text{ mm within } 60 \text{ s}$	6		(4)
Flaming droplets and particles	6		
	FIGRA $_{0.2\text{MJ}}(\text{W/S})$ FIGRA $_{0.4\text{MJ}}(\text{W/S})$ LFS < edge THR $_{600s}$ (MJ) SMOGRA (m²/s²) TSP $_{600s}$ (m²) FDP _{f≤10s} FDP _{f≤10s} $s \le 150 \text{ mm within } 60 \text{ s.}$ Flaming droplets and particles $F_s \le 150 \text{ mm within } 60 \text{ s}$ Flaming droplets and		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

a Not for extended application

⁽⁻⁾ Not applicable

Y Yes

N No

5 CLASSIFICATION AND FIELD OF APPLICATION

5.1 REFERENCE OF CLASSIFICATION

This classification has been carried out in accordance with clause 13.5, 13.9 and 13.10 of EN 13501-1:2007 +A1:2009.

5.2 CLASSIFICATION

The product, "ISOTOP PVC foil cladding for linear pipe insulation", in relation to its reaction to fire behaviour is classified: C_L

The additional classification in relation to smoke production is: s2

The additional classification in relation to flaming droplets/particles is: d0

The reaction to fire classification for the product is: C_L -s2,d0

5.3 FIELD OF APPLICATION

This classification is valid for the specific mounting and fixing described in DBI test report No. PFA10500.

6 LIMITATIONS

This document does not represent type approval or certification of the product.

Rikke Bille

M.Sc.Civ.Eng.

Martin Pauner M.Sc.Civ.Eng.

Bilcare Research GmbH Specialty Films Solutions Postfach 1253 DE-79217 Staufen Deutchland